Systems of Elliptic Equations Involving Multiple Inverse–square Potentials and Critical Exponents
نویسندگان
چکیده
In this paper, a system of elliptic equations is investigated, which involves multiple critical Sobolev exponents and singular points. The best Sobelev constant related to the system is studied, which is verified to be independent of the location of singular points. By a variant of the concentration compactness principle and the mountain-pass argument, the existence of positive solutions to the system is proved. At last, the existence of sign-changing solutions to the system is also established on the basis of the mountain-pass-type positive solutions. Mathematics subject classification (2010): 35B33, 35J60.
منابع مشابه
ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS
In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...
متن کاملQuasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملMultiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds
In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.
متن کاملNonlinear Schrödinger Equations with Symmetric Multi-polar Potentials
Schrödinger equations with Hardy-type singular potentials have been the object of a quite large interest in the recent literature, see e.g. [1, 7, 8, 12, 15, 18, 20, 25, 26, 28]. The singularity of inverse square potentials V (x) ∼ λ|x|−2 is critical both from the mathematical and the physical point of view. As it does not belong to the Kato’s class, it cannot be regarded as a lower order pertu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013